The MEP2 ammonium permease regulates pseudohyphal differentiation in Saccharomyces cerevisiae.

نویسندگان

  • M C Lorenz
  • J Heitman
چکیده

In response to nitrogen starvation, diploid cells of the budding yeast Saccharomyces cerevisiae differentiate into a filamentous, pseudohyphal growth form. This dimorphic transition is regulated by the Galpha protein GPA2, by RAS2, and by elements of the pheromone-responsive MAP kinase cascade, yet the mechanisms by which nitrogen starvation is sensed remain unclear. We have found that MEP2, a high affinity ammonium permease, is required for pseudohyphal differentiation in response to ammonium limitation. In contrast, MEP1 and MEP3, which are lower affinity ammonium permeases, are not required for filamentous growth. Deltamep2 mutant strains had no defects in growth rates or ammonium uptake, even at limiting ammonium concentrations. The pseudohyphal defect of Deltamep2/Deltamep2 strains was suppressed by dominant active GPA2 or RAS2 mutations and by addition of exogenous cAMP, but was not suppressed by activated alleles of the MAP kinase pathway. Analysis of MEP1/MEP2 hybrid proteins identified a small intracellular loop of MEP2 involved in the pseudohyphal regulatory function. In addition, mutations in GLN3, URE2 and NPR1, which abrogate MEP2 expression or stability, also conferred pseudohyphal growth defects. We propose that MEP2 is an ammonium sensor, generating a signal to regulate filamentous growth in response to ammonium starvation.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Mep2-dependent transcriptional profile links permease function to gene expression during pseudohyphal growth in Saccharomyces cerevisiae.

The ammonium permease Mep2 is required for the induction of pseudohyphal growth, a process in Saccharomyces cerevisiae that occurs in response to nutrient limitation. Mep2 has both a transport and a regulatory function, supporting models in which Mep2 acts as a sensor of ammonium availability. Potentially similar ammonium permease-dependent regulatory cascades operate in other fungi, and they m...

متن کامل

Regulators of pseudohyphal differentiation in Saccharomyces cerevisiae identified through multicopy suppressor analysis in ammonium permease mutant strains.

Nitrogen-starved diploid cells of the yeast Saccharomyces cerevisiae differentiate into a filamentous, pseudohyphal growth form. Recognition of nitrogen starvation is mediated, at least in part, by the ammonium permease Mep2p and the Galpha subunit Gpa2p. Genetic activation of the pheromone-responsive MAP kinase cascade, which is also required for filamentous growth, only weakly suppresses the ...

متن کامل

Impact of ammonium permeases mepA, mepB, and mepC on nitrogen-regulated secondary metabolism in Fusarium fujikuroi.

In Fusarium fujikuroi, the production of gibberellins and bikaverin is repressed by nitrogen sources such as glutamine or ammonium. Sensing and uptake of ammonium by specific permeases play key roles in nitrogen metabolism. Here, we describe the cloning of three ammonium permease genes, mepA, mepB, and mepC, and their participation in ammonium uptake and signal transduction in F. fujikuroi. The...

متن کامل

Role of the Npr1 kinase in ammonium transport and signaling by the ammonium permease Mep2 in Candida albicans.

The ammonium permease Mep2 induces a switch from unicellular yeast to filamentous growth in response to nitrogen limitation in Saccharomyces cerevisiae and Candida albicans. In S. cerevisiae, the function of Mep2 and other ammonium permeases depends on the protein kinase Npr1. Mutants lacking NPR1 cannot grow on low concentrations of ammonium and do not filament under limiting nitrogen conditio...

متن کامل

Recurrent Rearrangement during Adaptive Evolution in an Interspecific Yeast Hybrid Suggests a Model for Rapid Introgression

Genome rearrangements are associated with eukaryotic evolutionary processes ranging from tumorigenesis to speciation. Rearrangements are especially common following interspecific hybridization, and some of these could be expected to have strong selective value. To test this expectation we created de novo interspecific yeast hybrids between two diverged but largely syntenic Saccharomyces species...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The EMBO journal

دوره 17 5  شماره 

صفحات  -

تاریخ انتشار 1998